73 research outputs found

    ???????????? ????????? ????????? ????????? ?????? ?????????????????? ????????? ??????

    Get PDF
    Department of ChemistryProtein phosphorylation is one of the key protein post-translational modifications (PTMs), and it regulates biological process by dynamic phosphorylation and dephosphorylation. Especially, phosphorylation is involved in many signal transduction pathways, and some are related to human diseases. For this reason, kinase and phosphatases have been actively investigated as drug targets. Stable O-phosphorylations, such as phosphoserine (pSer), phosphothreonine (pThr), and phosphotyrosine (pTyr) are well-studied, and many tools are available. However, unstable phosphorylations, such as phospholysine(pLys), phosphohistidine (pHis) and phosphoaspartate (pAsp) are still much less explored due to their chemical instability and the lack of tools. In this thesis, my progress towards the development of chemical tools for studying pLys and pAsp. Chapter I describes our strategies and progress toward the development of phospholysine-specific antibodies, including the design and synthesis of the antigen, the affinity purification of the crude antisera, and the validation of the purified antibodies. In chapter II, the chemistry of pAsp and its biological functions are briefly reviewed. Then our efforts for covalent labeling of pAsp and subsequent detection are described. Our approach was validated with tandem mass spectrometry. Ongoing studies for the affinity enrichment of labeled peptides is also briefly summarized.clos

    Dipole-Allowed Direct Band Gap Silicon Superlattices

    Full text link
    Silicon is the most popular material used in electronic devices. However, its poor optical properties owing to its indirect band gap nature limit its usage in optoelectronic devices. Here we present the discovery of super-stable pure-silicon superlattice structures that can serve as promising materials for solar cell applications and can lead to the realization of pure Si-based optoelectronic devices. The structures are almost identical to that of bulk Si except that defective layers are intercalated in the diamond lattice. The superlattices exhibit dipole-allowed direct band gaps as well as indirect band gaps, providing ideal conditions for the investigation of a direct-to-indirect band gap transition. The transition can be understood in terms of a novel conduction band originating from defective layers, an overlap between the valence- and conduction-band edge states at the interface layers, and zone folding with quantum confinement effects on the conduction band of non-defective bulk-like Si. The fact that almost all structural portions of the superlattices originate from bulk Si warrants their stability and good lattice matching with bulk Si. Through first-principles molecular dynamics simulations, we confirmed their thermal stability and propose a possible method to synthesize the defective layer through wafer bonding

    The Effects of Transcranial Direct Current Stimulation on the Cognitive and Behavioral Changes After Electrode Implantation Surgery in Rats

    Get PDF
    Postoperative delirium can lead to increased morbidity and mortality, and may even be a potentially life-threatening clinical syndrome. However, the neural mechanism underlying this condition has not been fully understood and there is little knowledge regarding potential preventive strategies. To date, investigation of transcranial direct current stimulation (tDCS) for the relief of symptoms caused by neuropsychiatric disorders and the enhancement of cognitive performance has led to promising results. In this study, we demonstrated that tDCS has a possible effect on the fast recovery from delirium in rats after microelectrode implant surgery, as demonstrated by postoperative behavior and neurophysiology compared with sham stimulation. This is the first study to describe the possible effects of tDCS for the fast recovery from delirium based on the study of both electroencephalography and behavioral changes. Postoperative rats showed decreased attention, which is the core symptom of delirium. However, anodal tDCS over the right frontal area immediately after surgery exhibited positive effects on acute attentional deficit. It was found that relative power of theta was lower in the tDCS group than in the sham group after surgery, suggesting that the decrease might be the underlying reason for the positive effects of tDCS. Connectivity analysis revealed that tDCS could modulate effective connectivity and synchronization of brain activity among different brain areas, including the frontal cortex, parietal cortex, and thalamus. It was concluded that anodal tDCS on the right frontal regions may have the potential to help patients recover quickly from delirium

    Enhanced knee joint function due to accelerated rehabilitation exercise after anterior cruciate ligament reconstruction surgery in Korean male high school soccer players.

    Get PDF
    This study was conducted on Korean male high school soccer players who underwent anterior cruciate ligament reconstruction (ACLR) to identify the effects of an accelerated rehabilitation exercise (ARE) program on knee joint isometric strength, thigh circumference, Lysholm score, and active balance agility. We assigned eight test participants each to a physical therapy group (PTG) and an accelerated rehabilitation exercise group (AREG), and compared differences between the groups. Both the PTG and AREG showed significant increases in 30° away and 60° toward isometric strength after treatment. In addition, significant differences were observed in these strength tests between the two groups. Both groups also showed significant increases in thigh circumference, Lysholm score, and active balance agility after treatment, but no significant differences were observed between the two groups. We conclude that the ARE treatment was more effective for improving isometric strength of the knee joint than that of physical therapy, and that an active rehabilitation exercise program after ACLR had positive effects on recovery performance of patients with an ACL injury and their return to the playing field

    Virtual reality-based monitoring test for MCI: A multicenter feasibility study

    Get PDF
    ObjectivesAs the significance of the early diagnosis of mild cognitive impairment (MCI) has emerged, it is necessary to develop corresponding screening tools with high ecological validity and feasible biomarkers. Virtual reality (VR)-based cognitive assessment program, which is close to the daily life of the older adults, can be suitable screening tools for MCI with ecological validity and accessibility. Meanwhile, dehydroepiandrosterone (DHEA) has been observed at a low concentration in the older adults with dementia or cognitive decline, indicating its potential as a biomarker of MCI. This study aimed to determine the efficacy and usability of a VR cognitive assessment program and salivary DHEA for screening MCI.MethodsThe VR cognitive assessment program and the traditional Montreal Cognitive Assessment (MOCA) test were performed on 12 patients with MCI and 108 healthy older adults. The VR program operates in a situation of caring for a grandchild, and evaluates the memory, attention, visuospatial, and executive functions. An analysis of covariance (ANCOVA), a partial correlation analysis, and receiving operating characteristic (ROC) curve analysis were conducted for statistical analysis.ResultsAccording to the ANCOVA, no significant difference in MOCA scores was found between the normal and MCI groups (F = 2.36, p = 0.127). However, the VR total score of the MCI group was significantly lower than that of the normal group (F = 8.674, p = 0.004). There was a significant correlation between the MOCA and VR scores in the total and matched subdomain scores. The ROC curve analysis also showed a larger area under the curve (AUC) for the VR test (0.765) than for the MOCA test (0.598), and the sensitivity and specificity of the VR program were 0.833 and 0.722, respectively. Salivary DHEA was correlated with VR total (R2 = 0.082, p = 0.01) and attention scores (R2 = 0.086, p = 0.009).ConclusionThe VR cognitive test was as effective as the traditional MOCA test in the MCI classification and safe enough for older adults to perform, indicating its potential as a diagnostic tool. It has also been shown that salivary DHEA can be used as a biomarker for MCI

    gaze pattern in

    No full text
    Relationship between abstract thinking and ey

    A line feature extraction method for finger-knuckle-print verification

    No full text
    Due to its mobility and reliability, the outer finger-knuckle-print (FKP) possesses several advantages over other biometric traits of the hand. However, most existing state-of-the-art methods utilize either local features alone or together with global features for FKP verification. These methods often demand high computational cost despite their high verification accuracy. In this paper, we propose a novel and fast matrix projection method for extracting line features from the finger-knuckle-print for person verification. Essentially, both the horizontal and the vertical knuckle lines are extracted by projecting the knuckle print image onto a shift-and-difference matrix. Such a matrix enables directional image shifting and subtraction within a single matrix multiplication. The resultant difference image then goes through a sigmoidal activation for contrast enhancement. Subsequently, the Fourier spectrum of the contrast enhanced image is adopted as the holistic features of the given finger-knuckle-print image. The entire process of extracting the proposed features is expressed in an analytic form to facilitate a fast vectorized implementation. For cognition performance enhancement, the two directional line features are subsequently fused at the score level by minimizing the error counts of the extreme learning machine kernel. Extensive experiments are performed to compare the proposed method with competing methods using three public finger-knuckle-print databases. Our experimental results show encouraging performance in terms of verification accuracy and computational efficiency.This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant number: NRF-2015R1D1A1A09061316)
    corecore